MoE

预计学习时间:30分钟

混合专家模型(Mixture of Experts, MoE)是一种条件计算架构,通过动态地将不同的输入分配给专门的"专家"子网络处理,能够在保持推理成本较低的同时大幅增加模型参数量和表达能力,已成为扩展大语言模型能力的重要技术路线。

MoE的基本原理

MoE的核心思想是将一个大型网络分解为多个专家网络(子网络),并使用门控网络(Router)决定哪些专家负责处理当前输入:

其中:

  • 是第 个专家网络对输入 的输出
  • 是门控网络为专家 分配的权重
  • 是专家总数

关键特点:

  • 只激活一部分专家,从而降低计算成本
  • 大幅增加参数量,提高模型容量
  • 每个专家可以专门处理不同类型的输入

MoE的基本结构

1. 标准MoE实现

import torch
import torch.nn as nn
import torch.nn.functional as F

class MixtureOfExperts(nn.Module):
    def __init__(self, input_size, output_size, num_experts, top_k=2):
        super().__init__()
        self.input_size = input_size
        self.output_size = output_size
        self.num_experts = num_experts
        self.top_k = top_k
        
        # 定义专家网络
        self.experts = nn.ModuleList([
            nn.Sequential(
                nn.Linear(input_size, 4 * input_size),
                nn.GELU(),
                nn.Linear(4 * input_size, output_size)
            ) for _ in range(num_experts)
        ])
        
        # 门控网络(路由器)
        self.router = nn.Linear(input_size, num_experts)
        
    def forward(self, x):
        """
        x: [batch_size, seq_len, input_size]
        """
        batch_size, seq_len, input_size = x.shape
        
        # 将输入展平为二维以便于处理
        x_flat = x.view(-1, input_size)  # [batch_size*seq_len, input_size]
        
        # 路由器计算每个专家的权重
        router_logits = self.router(x_flat)  # [batch_size*seq_len, num_experts]
        
        # 选择top-k个专家
        router_probs = F.softmax(router_logits, dim=-1)
        top_k_probs, top_k_indices = torch.topk(
            router_probs, self.top_k, dim=-1
        )
        
        # 归一化选中的概率
        top_k_probs = top_k_probs / top_k_probs.sum(dim=-1, keepdim=True)
        
        # 准备结果张量
        final_output = torch.zeros(
            batch_size * seq_len, self.output_size, 
            device=x.device
        )
        
        # 获取每个专家的输出并加权合并
        for expert_idx in range(self.num_experts):
            # 找出路由到该专家的所有样本
            expert_mask = (top_k_indices == expert_idx).any(dim=-1)
            if not expert_mask.any():
                continue
                
            # 收集路由到该专家的样本
            expert_inputs = x_flat[expert_mask]
            
            # 计算该专家的输出
            expert_output = self.experts[expert_idx](expert_inputs)
            
            # 找出该专家在top_k中的位置
            expert_positions = (top_k_indices == expert_idx).long()
            # 提取对应的概率权重
            expert_probs = torch.sum(
                top_k_probs * expert_positions, dim=-1
            )
            
            # 将该专家的加权输出加入最终结果
            final_output[expert_mask] += expert_output * expert_probs.unsqueeze(-1)[expert_mask]
        
        # 重塑回原始形状
        final_output = final_output.view(batch_size, seq_len, self.output_size)
        
        return final_output

2. 专家与门控示意图

MoE结构示意图

MoE的效率高度依赖于门控网络的质量,如果路由不够精确,可能会导致专家负载不均衡和性能下降。

MoE在Transformer中的应用

1. 替换FFN层

最常见的应用是用MoE替换Transformer中的前馈网络(FFN)层:

class MoETransformerLayer(nn.Module):
    def __init__(self, d_model, num_heads, num_experts, top_k=2, dropout=0.1):
        super().__init__()
        self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
        
        # 用MoE替换标准FFN
        self.moe = MixtureOfExperts(
            input_size=d_model,
            output_size=d_model,
            num_experts=num_experts,
            top_k=top_k
        )
        
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x, mask=None):
        # 自注意力子层
        attn_output = self.self_attn(x, x, x, mask)
        x = self.norm1(x + self.dropout(attn_output))
        
        # MoE子层
        moe_output = self.moe(x)
        x = self.norm2(x + self.dropout(moe_output))
        
        return x

2. Switch Transformer实现

Google提出的Switch Transformer使用"一次一个专家"的简化路由策略:

class SwitchMoE(nn.Module):
    def __init__(self, input_size, output_size, num_experts, capacity_factor=1.2):
        super().__init__()
        self.input_size = input_size
        self.output_size = output_size
        self.num_experts = num_experts
        
        # 每个专家的最大样本数,使用容量因子避免负载不均衡
        self.capacity = int(capacity_factor * (input_size // num_experts))
        
        # 专家网络
        self.experts = nn.ModuleList([
            nn.Sequential(
                nn.Linear(input_size, 4 * input_size),
                nn.GELU(),
                nn.Linear(4 * input_size, output_size)
            ) for _ in range(num_experts)
        ])
        
        # 路由器
        self.router = nn.Linear(input_size, num_experts, bias=False)
        
    def forward(self, x):
        batch_size, seq_len, input_size = x.shape
        x_flat = x.view(-1, input_size)
        
        # 路由
        route_logits = self.router(x_flat)  # [batch_size*seq_len, num_experts]
        routing_weights = F.softmax(route_logits, dim=-1)
        
        # 为每个样本选择概率最高的专家
        expert_indices = torch.argmax(routing_weights, dim=-1)  # [batch_size*seq_len]
        
        # 准备结果张量
        final_output = torch.zeros(
            batch_size * seq_len, self.output_size, 
            device=x.device
        )
        
        # 为每个专家收集输入并处理
        for expert_idx in range(self.num_experts):
            # 找出分配给该专家的样本
            expert_mask = (expert_indices == expert_idx)
            if not expert_mask.any():
                continue
                
            # 选择最多capacity个样本,避免某专家过载
            indices = expert_mask.nonzero().squeeze(-1)
            if indices.size(0) > self.capacity:
                # 如果超过容量,随机选择样本
                perm = torch.randperm(indices.size(0), device=x.device)
                indices = indices[perm[:self.capacity]]
                
            # 收集专家输入
            expert_inputs = x_flat[indices]
            
            # 计算专家输出
            expert_outputs = self.experts[expert_idx](expert_inputs)
            
            # 将输出放回对应位置
            final_output[indices] = expert_outputs
            
        # 重塑回原始形状
        final_output = final_output.view(batch_size, seq_len, self.output_size)
        
        return final_output

MoE的高级变体

1. GShard实现

GShard是Google设计的大规模稀疏MoE系统,用于超大模型训练:

class GShard(nn.Module):
    def __init__(self, input_size, output_size, num_experts, top_k=2, 
                 capacity_factor=1.5, jitter_noise=0.1):
        super().__init__()
        self.input_size = input_size
        self.output_size = output_size
        self.num_experts = num_experts
        self.top_k = top_k
        self.capacity = int(capacity_factor * (input_size // num_experts) * top_k)
        self.jitter_noise = jitter_noise
        
        # 初始化专家
        self.experts = nn.ModuleList([
            FeedForward(input_size, output_size) for _ in range(num_experts)
        ])
        
        # 路由器
        self.router = nn.Linear(input_size, num_experts)
        
    def forward(self, x, is_training=True):
        batch_size, seq_len, input_size = x.shape
        x_flat = x.view(-1, input_size)
        
        # 路由逻辑
        route_logits = self.router(x_flat)
        
        # 训练时添加噪声以促进专家多样性
        if is_training and self.jitter_noise > 0:
            noise = torch.randn_like(route_logits) * self.jitter_noise
            route_logits += noise
            
        # 计算路由概率和选择top-k专家
        route_probs = F.softmax(route_logits, dim=-1)
        top_k_probs, top_k_indices = torch.topk(route_probs, self.top_k, dim=-1)
        
        # 按专家对样本进行分组
        expert_counts = torch.zeros(self.num_experts, device=x.device)
        
        outputs = torch.zeros_like(x_flat)
        for sample_idx in range(batch_size * seq_len):
            for k in range(self.top_k):
                expert_idx = top_k_indices[sample_idx, k].item()
                expert_counts[expert_idx] += 1
        
        # 实现负载均衡和容量控制(简化实现)
        # ...实际GShard有更复杂的负载平衡机制
        
        return outputs.view(batch_size, seq_len, self.output_size)

2. Expert Choice路由

与标准MoE的Token Choice路由相反,Expert Choice让专家选择token:

class ExpertChoiceRouter(nn.Module):
    def __init__(self, input_size, num_experts, capacity_factor=1.0):
        super().__init__()
        self.input_size = input_size
        self.num_experts = num_experts
        self.capacity = int(capacity_factor * input_size)
        
        # 专家选择token的路由器
        self.router = nn.Linear(input_size, num_experts)
        
    def forward(self, x):
        batch_size, seq_len, input_size = x.shape
        x_flat = x.view(-1, input_size)  # [batch_size*seq_len, input_size]
        
        # 计算每个专家对每个token的分数
        router_logits = self.router(x_flat).t()  # [num_experts, batch_size*seq_len]
        
        # 每个专家选择capacity个最高分数的token
        expert_assignments = []
        for expert_idx in range(self.num_experts):
            # 专家的所有分数
            expert_logits = router_logits[expert_idx]
            
            # 选择分数最高的capacity个token
            if self.capacity < batch_size * seq_len:
                token_indices = torch.topk(expert_logits, self.capacity).indices
            else:
                token_indices = torch.arange(batch_size * seq_len, device=x.device)
                
            expert_assignments.append(token_indices)
            
        return expert_assignments

MoE模型的训练技术

1. 负载均衡

MoE训练的主要挑战之一是专家负载不平衡,通常通过辅助损失解决:

def compute_load_balancing_loss(router_probs, expert_indices, num_experts):
    """计算负载平衡损失"""
    # router_probs: [batch_size*seq_len, num_experts]
    # expert_indices: [batch_size*seq_len, top_k]
    
    # 计算每个专家被选择的概率
    router_prob_per_expert = router_probs.mean(0)
    
    # 计算每个专家实际接收的token数量
    expert_counts = torch.zeros(num_experts, device=router_probs.device)
    for idx in expert_indices.view(-1):
        expert_counts[idx] += 1
    expert_prop = expert_counts / expert_counts.sum()
    
    # 计算KL散度损失:实际分布与均匀分布之间
    ideal_prop = torch.ones_like(expert_prop) / num_experts
    
    # (1) 专家使用率 - 鼓励均匀分配
    usage_loss = torch.sum(ideal_prop * torch.log(ideal_prop / (router_prob_per_expert + 1e-9)))
    
    # (2) 专家负载 - 惩罚超负荷专家
    load_loss = torch.sum(expert_prop * torch.log(expert_prop / (ideal_prop + 1e-9)))
    
    return usage_loss + load_loss

2. 辅助损失应用

将负载均衡损失与主任务损失结合:

def train_step(model, optimizer, inputs, targets, aux_loss_factor=0.01):
    """包含辅助损失的训练步骤"""
    # 前向传播
    outputs, router_probs, expert_indices = model(inputs, return_routing_info=True)
    
    # 主任务损失
    main_loss = F.cross_entropy(outputs.view(-1, outputs.size(-1)), targets.view(-1))
    
    # 负载均衡损失
    load_balancing_loss = compute_load_balancing_loss(
        router_probs, expert_indices, model.num_experts
    )
    
    # 总损失
    total_loss = main_loss + aux_loss_factor * load_balancing_loss
    
    # 反向传播
    optimizer.zero_grad()
    total_loss.backward()
    optimizer.step()
    
    return {
        "main_loss": main_loss.item(),
        "aux_loss": load_balancing_loss.item(),
        "total_loss": total_loss.item()
    }

3. 专家并行训练

大规模MoE模型通常需要特殊的并行策略:

# 伪代码:专家并行训练(简化版)
def expert_parallel_forward(local_batch, expert_params, global_expert_map):
    """在多设备上并行处理专家计算"""
    # local_batch: 当前设备的输入批次
    # expert_params: 当前设备上的专家参数
    # global_expert_map: 专家到设备的映射
    
    # 1. 计算路由概率
    route_probs = compute_routing_probabilities(local_batch)
    
    # 2. 根据路由结果将样本分发到相应设备
    expert_inputs = distribute_samples_by_expert(local_batch, route_probs, global_expert_map)
    
    # 3. 在当前设备上运行本地专家
    local_expert_outputs = process_with_local_experts(expert_inputs, expert_params)
    
    # 4. 收集所有设备的专家输出
    all_expert_outputs = all_gather(local_expert_outputs)
    
    # 5. 根据路由概率合并专家输出
    final_output = combine_expert_outputs(all_expert_outputs, route_probs)
    
    return final_output

MoE的性能分析

1. 参数效率和计算成本

MoE大幅提高参数效率,但需要平衡专家数和激活数:

def analyze_moe_efficiency(base_model_params, moe_model_params, active_experts_ratio):
    """分析MoE模型的参数效率"""
    # 计算实际激活的参数量
    active_params = moe_model_params * active_experts_ratio
    
    # 参数效率增益
    param_efficiency = moe_model_params / base_model_params
    
    # 计算效率增益(假设计算成本与激活参数成正比)
    compute_efficiency = active_params / base_model_params
    
    # 存储效率(存储所有参数但只使用部分)
    storage_efficiency = moe_model_params / active_params
    
    return {
        "param_efficiency": param_efficiency,
        "compute_efficiency": compute_efficiency,
        "storage_efficiency": storage_efficiency,
        "total_params": moe_model_params,
        "active_params": active_params
    }

不同配置的MoE参数效率(以8专家模型为例):

模型类型总参数量每次激活参数量参数放大率计算开销增加
密集模型1B1B1x1x
MoE (top-1)7B1B7x1x
MoE (top-2)7B2B7x2x
大密集模型7B7B7x7x

2. 专家利用率分析

监控专家的实际使用情况:

def analyze_expert_utilization(routing_data, num_experts, samples_per_expert=None):
    """分析专家利用率"""
    # routing_data: 每个token分配的专家ID
    # 计算每个专家接收的token数量
    expert_counts = torch.bincount(routing_data.flatten(), minlength=num_experts)
    
    # 计算利用率统计信息
    total_tokens = routing_data.numel()
    expert_utilization = expert_counts / total_tokens
    
    # 计算不平衡指标
    max_util = expert_utilization.max().item()
    min_util = expert_utilization.min().item()
    util_std = expert_utilization.std().item()
    
    # 专家多样性指标
    expert_entropy = -torch.sum(
        expert_utilization * torch.log(expert_utilization + 1e-10)
    ) / torch.log(torch.tensor(num_experts, dtype=torch.float))
    
    # 容量溢出(如果提供了每个专家的容量)
    overflow = {}
    if samples_per_expert is not None:
        for i in range(num_experts):
            overflow[i] = max(0, expert_counts[i].item() - samples_per_expert)
    
    return {
        "expert_counts": expert_counts.tolist(),
        "utilization": expert_utilization.tolist(),
        "max_utilization": max_util,
        "min_utilization": min_util,
        "std_utilization": util_std,
        "entropy": expert_entropy.item(),
        "overflow": overflow
    }

MoE模型的工程优化

1. 稀疏张量优化

利用稀疏计算加速MoE:

class OptimizedMoE(nn.Module):
    def __init__(self, input_size, output_size, num_experts, top_k=2):
        super().__init__()
        # 同上初始化
        # ...
        
    def forward(self, x):
        batch_size, seq_len, input_size = x.shape
        
        # 计算路由
        router_logits = self.router(x.view(-1, input_size))
        router_probs = F.softmax(router_logits, dim=-1)
        
        # 选择top-k专家
        top_k_probs, top_k_indices = torch.topk(router_probs, self.top_k, dim=-1)
        top_k_probs = top_k_probs / top_k_probs.sum(dim=-1, keepdim=True)
        
        # 构建稀疏调度矩阵
        flat_indices = torch.arange(batch_size * seq_len, device=x.device)
        expert_indices = []
        for k in range(self.top_k):
            expert_indices.append(
                torch.stack([flat_indices, top_k_indices[:, k]], dim=0)
            )
        expert_indices = torch.cat(expert_indices, dim=1)
        
        # 构建权重矩阵
        expert_weights = top_k_probs.view(-1)
        
        # 创建稀疏调度矩阵
        dispatch = torch.sparse.FloatTensor(
            expert_indices, 
            expert_weights,
            torch.Size([batch_size * seq_len, self.num_experts])
        )
        
        # 创建稀疏组合矩阵(转置)
        combine = torch.sparse.FloatTensor(
            torch.stack([expert_indices[1], expert_indices[0]], dim=0),
            expert_weights,
            torch.Size([self.num_experts, batch_size * seq_len])
        )
        
        # 稀疏调度和组合操作
        expert_inputs = torch.sparse.mm(dispatch, x.view(-1, input_size))
        # ... 专家计算 ...
        final_output = torch.sparse.mm(combine, expert_outputs)
        
        return final_output.view(batch_size, seq_len, output_size)

2. 异步通信优化

在分布式环境中优化专家间通信:

# 伪代码:异步专家通信
def optimized_distributed_moe(local_batch, local_experts, world_size):
    """优化的分布式MoE前向传播"""
    # 计算路由
    route_probs = compute_routing(local_batch)
    
    # 为每个远程设备准备数据
    device_batches = [[] for _ in range(world_size)]
    for i, probs in enumerate(route_probs):
        target_device = probs.argmax().item() % world_size
        device_batches[target_device].append(local_batch[i])
    
    # 异步发送数据到远程设备
    send_futures = []
    for device_id, batch in enumerate(device_batches):
        if device_id != local_rank and batch:
            future = async_send(batch, device_id)
            send_futures.append(future)
    
    # 处理本地样本
    local_outputs = process_with_local_experts(device_batches[local_rank])
    
    # 异步接收其他设备的结果
    receive_futures = [async_receive(device_id) for device_id in range(world_size) if device_id != local_rank]
    
    # 等待所有通信完成
    all_outputs = [local_outputs] + [future.wait() for future in receive_futures]
    
    # 重新组织结果
    final_outputs = reassemble_outputs(all_outputs, route_probs)
    
    return final_outputs

MoE在现代大语言模型中的应用

1. GShard和Switch Transformer

Google的早期大规模MoE模型:

class SwitchTransformerLayer(nn.Module):
    def __init__(self, d_model, num_heads, num_experts, dropout=0.1):
        super().__init__()
        # 标准自注意力
        self.self_attn = MultiHeadAttention(d_model, num_heads)
        self.norm1 = nn.LayerNorm(d_model)
        
        # Switch MoE代替标准FFN
        self.switch_moe = SwitchMoE(d_model, d_model, num_experts)
        self.norm2 = nn.LayerNorm(d_model)
        
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x, mask=None):
        # 自注意力子层
        attn_output = self.self_attn(x, x, x, mask)
        x = self.norm1(x + self.dropout(attn_output))
        
        # Switch MoE子层
        moe_output = self.switch_moe(x)
        x = self.norm2(x + self.dropout(moe_output))
        
        return x

2. Mixtral和Mixtral-MoE架构

Mistral AI的MoE架构实现:

class MixtralBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.num_experts = config.num_experts
        self.num_experts_per_tok = config.num_experts_per_tok
        
        # 自注意力
        self.self_attn = SelfAttention(config)
        
        # MoE FFN
        self.router = nn.Linear(self.hidden_size, self.num_experts, bias=False)
        self.experts = nn.ModuleList([
            MixtralExpert(config) for _ in range(self.num_experts)
        ])
        
        # 层归一化
        self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        
    def forward(self, hidden_states, attention_mask=None):
        # 输入归一化
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        
        # 自注意力
        hidden_states = self.self_attn(hidden_states, attention_mask)
        hidden_states = residual + hidden_states
        
        # MoE FFN
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        
        # 路由计算
        router_logits = self.router(hidden_states)
        routing_weights, selected_experts = torch.topk(
            router_logits, self.num_experts_per_tok, dim=-1
        )
        routing_weights = F.softmax(routing_weights, dim=-1)
        
        # 准备输出
        final_hidden_states = torch.zeros_like(hidden_states)
        
        # 专家处理
        for batch_idx in range(hidden_states.shape[0]):
            for seq_idx in range(hidden_states.shape[1]):
                token_hidden_state = hidden_states[batch_idx, seq_idx].unsqueeze(0)
                
                # 处理当前token的每个选中专家
                token_weights = routing_weights[batch_idx, seq_idx]
                token_experts = selected_experts[batch_idx, seq_idx]
                
                expert_outputs = []
                for i, expert_idx in enumerate(token_experts):
                    expert_output = self.experts[expert_idx](token_hidden_state)
                    expert_outputs.append(token_weights[i] * expert_output)
                
                final_hidden_states[batch_idx, seq_idx] = sum(expert_outputs)
        
        hidden_states = residual + final_hidden_states
        return hidden_states

MoE的实际应用案例

1. 大规模预训练模型

MoE用于大规模预训练:

def train_moe_llm(tokenizer, dataset, config):
    """大规模MoE语言模型预训练示例"""
    # 初始化MoE模型
    model = MoETransformerLM(
        vocab_size=tokenizer.vocab_size,
        d_model=config.d_model,
        num_layers=config.num_layers,
        num_heads=config.num_heads,
        num_experts=config.num_experts,
        top_k=config.top_k
    )
    
    # 分布式训练设置
    model = setup_distributed_training(model, config.num_devices)
    
    # 优化器设置
    optimizer = torch.optim.AdamW(model.parameters(), lr=config.lr)
    
    # 训练循环
    for epoch in range(config.epochs):
        for batch in dataset:
            input_ids = batch["input_ids"]
            attention_mask = batch["attention_mask"]
            labels = batch["labels"]
            
            # 前向传播
            outputs, router_probs, expert_indices = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                return_routing_info=True
            )
            
            # 计算损失
            main_loss = F.cross_entropy(
                outputs.view(-1, outputs.size(-1)), 
                labels.view(-1)
            )
            
            # 计算负载均衡损失
            aux_loss = compute_load_balancing_loss(
                router_probs, expert_indices, config.num_experts
            )
            
            # 总损失
            loss = main_loss + config.aux_weight * aux_loss
            
            # 反向传播和优化
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            # 记录指标
            log_metrics(main_loss, aux_loss, router_probs, expert_indices)
            
    return model

2. 微调和适应

在预训练MoE模型的基础上进行微调:

def finetune_moe_model(pretrained_model, task_dataset, config):
    """基于MoE模型的微调示例"""
    # 冻结部分参数
    for param in pretrained_model.parameters():
        param.requires_grad = False
    
    # 只训练特定层的路由器和新增的任务头
    for layer in pretrained_model.layers[-config.num_tunable_layers:]:
        for param in layer.moe.router.parameters():
            param.requires_grad = True
            
    # 添加任务特定头
    task_head = TaskSpecificHead(
        pretrained_model.config.d_model, 
        config.num_classes
    )
    model = CombinedModel(pretrained_model, task_head)
    
    # 优化器
    optimizer = torch.optim.AdamW([
        {'params': [p for p in model.parameters() if p.requires_grad], 'lr': config.lr}
    ])
    
    # 微调循环
    for epoch in range(config.epochs):
        for batch in task_dataset:
            inputs = batch["inputs"]
            labels = batch["labels"]
            
            # 前向传播
            outputs = model(inputs)
            loss = F.cross_entropy(outputs, labels)
            
            # 反向传播
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
    return model

小结

混合专家模型(MoE)通过条件计算和专家分流,提供了一种高效扩展模型参数的方法:

  1. 核心优势

    • 大幅增加参数量而不等比增加计算成本
    • 专家特化,提高模型处理不同类型输入的能力
    • 模块化架构,易于扩展和并行化
  2. 主要挑战

    • 专家负载均衡和有效路由
    • 分布式训练的通信开销
    • 更复杂的训练过程和超参数调优
  3. 应用场景

    • 超大规模语言模型训练
    • 多领域、多任务学习
    • 计算资源受限场景下的大模型开发

随着大语言模型规模的不断增长,MoE已成为提高参数效率和扩展模型能力的重要技术路线,代表了大模型发展的重要方向之一。